

XVII International Scientific Conference on Industrial Systems (IS'17) Novi Sad, Serbia, October 4. – 6. 2017. University of Novi Sad, Faculty of Technical Sciences, Department for Industrial Engineering and Management Available online at http://www.iim.ftn.uns.ac.rs/is17

INFLUENCE OF INTEGRATED MANAGEMENT SYSTEM ON QUALITY MANAGEMENT PERFORMANCE

Srđan Vulanović, PhD

(Assistant Professor, University of Novi Sad, Faculty of Technical Sciences, Department of Industrial Engineering and Management Dositej Obradovic Square No. 6, Novi Sad, Serbia; srdjanv@uns.ac.rs)

Milan Delić, PhD

(Assistant Professor, University of Novi Sad, Faculty of Technical Sciences, Department of Industrial Engineering and Management Dositej Obradovic Square No. 6, Novi Sad, Serbia; delic@uns.ac.rs)

Ivan Beker, PhD

(Assistant Professor, University of Novi Sad, Faculty of Technical Sciences, Department of Industrial Engineering and Management Dositei Obradovic Square No. 6, Novi Sad, Serbia; beker@uns.ac.rs)

Bato Kamberović, PhD

(Assistant Professor, University of Novi Sad, Faculty of Technical Sciences, Department of Industrial Engineering and Management Dositej Obradovic Square No. 6, Novi Sad, Serbia; bato@uns.ac.rs)

Sonja Čerepnalkovska, PhD

(Standardization Institute of the Republic of Macedonia Jurij Gagarin, No.15, Skopje, Republic of Macedonija; cerepnalkovska.sonja@isrm.gov.mk)

Abstract

Standard ISO 9001:2015 defines some common requirements focused on overall functioning of quality management system in organizations that concern: nonconformity control, corrective actions, customer satisfaction, etc. All these requirements are repeated in standards ISO 14001 and OHSAS 18001 and they should be integrated in a single management system in an organization. The number of implemented standards should increase key performance indicators of the organization's processes but, in some cases, they can also lead to overlapping and fuzziness. Having in mind that the knowledge of the organization based on leadership awareness was always essential for the functioning of management systems, the authors wanted to explore the correlation between a number of implemented standards and leadership awareness on quality management essential constructs. This paper provides the results of a survey of 50 ISO certified companies in region, which were analyzed and corresponding conclusions were made.

Key words: Environment, Integrated Management System, Occupational Health and Safety, Quality

1. INTRODUCTION

Numerous studies have examined linkages between quality and performance. Anderson et al. [1] identified visionary leadership, internal and external cooperation, process management, and employee fulfilment as key constructs of quality management. Moreover, they demonstrated that these constructs are drivers of customer satisfaction. Similar constructs have been identified in other studies and been shown to positively affect product quality [2]; [3] and broader measures of manufacturing performance [4]; [5]. If any organization decides to implement standardized management system and comply with specific standard requirements, it will certainly reduce risks that could jeopardize its operation. An insight into the requirements of each management standard leads to a conclusion that every standard treats a specific group of risks that threaten the organization. This fact leads to the following overview:

 Standard ISO 9001 [6] (Quality Management System) promotes a system that has a main objective to effectively manage a group of risks that can degrade the quality of the processes in a company and thus adversely affect customer satisfaction;

- Standard ISO 14001 [7] (Environmental Management System) aims to control a group of risks that can lead to the degradation of the environment by inadequate waste management, uncontrolled consumption of energy, emission of pollutants in water, air or land and
- Standard OHSAS 18001 [8] (Occupational Health and Safety System) defines requirements which are aimed to reduce risks of injuries and occupational ill health.

Considering listed facts, it could be concluded that the implementation of integrated management systems according to international standards should reduce certain groups of risk, as well as number of nonconformities in processes and products of an organization, so the following hypothesis can be stated: "the existence of integrated management system (ISO 9001, ISO 14001 and OHSAS 18001) should improve overall performance of the organization".

In further text authors tried to prove this hypothesis by a research that included a survey among 50 companies that have certified their management systems.

2. RESEARCH DIMENSIONS

All questions in the conducted survey were defined regarding two major dimensions of tested enterprises:

- 1. Performance of the organization which was set as latent variable and
- 2. Implementation of integrated management systems according to standards ISO 9001, ISO 14001 and OHSAS 18001 which was set as control variable.

Extensive literature was consulted for the selection of key indicators used for organization's performance evaluation. Final constructs were adopted from [9]. They are as follows:

- 1. Operational management
- 2. Marketing
- 3. Development
- 4. Commercial jobs and
- 5. Basic processes

Shown research dimensions and listed constructs were reviewed by a dozen of competent researchers and proved to be relevant.

3. RESEARCH INSTRUMENT

The questionnaire used as a research instrument in this study had 24 questions relating 5 constructs of the organization's performance, that are shown in Table 1.

The survey was conducted on a sample of 50 ISO certified organizations in the Republic of Macedonia. Research model was empirically tested and was found to be valid and reliable. The questionnaire reliability test was conducted by calculating Cronbach Alpha coefficients [10]. All values for Cronbach Alpha coefficient exceed 0.7 which implies that all of the research dimensions are reliable.

Overall value that was calculated for Cronbach Alpha coefficient was α =0,902.

Constructs	α	Mean	StDev			
Operational management						
Trends in making a profit	0.895	6.00	1.389			
Level of execution of the business plan	0.857	6.14	1.060			
The ratio of planned / realized resources	0.864	6.26	0.973			
Number of corrective and preventive actions	0.882	5.95	1.093			
Marketing	•					
Ratings of stakeholders requirements satisfaction	0.872	6.09	1.206			
Costs of market research	0.855	5.55	1.476			
Customer`s satisfaction	0.867	6.27	1.062			
The degree of product / service recognition in market	0.854	5.87	1.504			
Costs of promotion	0.843	5.51	1.526			
Success of promotion	0.875	5.84	1.151			
Development						
The ratio of employees in development / all employees	0.865	5.48	1.440			
Average duration of the development process of new products / services	0.818	5.66	1.431			
Number of new products / services in the overall range	0.823	5.48	1.293			
Number of improved products / services in the overall range	0.831	5.48	1.191			
The ratio of investment in the development of new / improved products / services and total revenues	0.864	5.93	1.319			
Commercial jobs						
Percentage of performed requirements for procurement with no complaints	0.921	5.89	1.275			
Time of procurement delays	0.895	5.80	1.420			
The costs of the procurement work process	0.889	5.61	1.569			
The degree of sales plan realization	0.912	6.02	1.286			
The ratio of the number and value of completed bids / total number of offers	0.905	5.73	1.382			
Basic processes						
The ratio of planned / realized total costs	1.257	6.14	1.257			
The total value of stock	1.281	5.82	1.281			
The level of the operational plan execution	1.283	5.91	1.283			
The costs of unplanned work (scrap, finishing)	1.305	5.93	1.305			

4. SAMPLE DEMOGRAPHICS

The sample of tested enterprises was quite diverse considering their core businesses and size. In Table 2 it can be seen that almost half of the enterprises are in the service industry, but that should be no surprise, concerning the fact that services are nowadays prevalent on the global market.

Table 2. The groups of agentship in enterprises

Valid	Frequency	Percent	Valid Percent	Cumulative Percent
Production and services	12	24.0	24.0	26.0
Production	15	30.0	30.0	54.0
Services	23	46.0	46.0	100.0
Total	50	100.0	100.0	

Specific activities in enterprises that were tested are shown in the Table 3.

Table 3	3. The	activities	in	tested	enterprises
---------	---------------	------------	----	--------	-------------

Valid	Frequ-	Percent	Valid Percent	Cumulative Percent
Banking	1	2.0	2.0	2.0
State administration	2	4.0	4.0	6.0
State administra- tion in services	1	2.0	2.0	8.0
Construction	1	2.0	2.0	10.0
Chemicals and pharmaceuticals	1	2.0	2.0	12.0
Industry	20	40.0	40.0	52.0
Mining and energetic industry	1	2.0	2.0	54.0
Construction	1	2.0	2.0	56.0
Information technologies	5	10.0	10.0	66.0
Public services	1	2.0	2.0	68.0
Education	1	2.0	2.0	70.0
Other	6	12.0	12.0	82.0
Telecommunication and information technologies	2	4.0	4.0	86.0
Commerce	7	14.0	14.0	100.0
Total	50	100.0	100.0	

The number of employees in the enterprises is shown in Table 4. It can be seen that "micro" companies have the smallest share in the sample, but that also could be expected because implementation of management systems according to international standards are more often related to large and complex organizations.

Valid	Frequency	Percent	Valid Percent	Cumulative Percent
1 to 9	5	10.0	10.0	10.0
10 to 49	13	26.0	26.0	36.0
50 to 249	18	36.0	36.0	72.0
≥ 250	14	28.0	28.0	100.0
Total	50	100.0	100.0	

In Table 5 it can be seen that all the enterprises are ISO certified, which was the prerequisite for participation in the survey. Half of them have just ISO 9001 standard implemented and the other half have added ISO 14001 and/or OHSAS 18001 standard to it.

Table 5. The number of implemented	standards in the sample
------------------------------------	-------------------------

Valid	Frequ- ency	Percent	Valid Percent	Cumulative Percent
9001	25	50.0	50.0	50.0
9001+14001	11	22.0	22.0	72.0
9001+14001+18001	14	28.0	28.0	100.0
Total	50	100.0	100.0	

5. RESULTS

The authors analyzed survey results using the Analysis of variance (ANOVA) to test the differences in organization's performance indicators among the groups of enterprises according to the number of standards implemented, which is shown in the Table 6.

Table 6. Variance in organization`s performance

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	845.924	1	845.924	13.368	.001
Within Groups	2974.198	47	63.281		
Total	3820.122	48			

The next step of a research was conducting the multiple comparisons with organization's performance as a dependent variable. After the survey has concluded ANOVA post hoc analysis was carried out, and the obtained results are shown in the Table 7. As shown in Table 7, significant differences were found between those companies with just ISO 9001 standard implemented where organization's performances are not so great, and the companies that have implemented ISO 14001 and OHSAS 18001 along with ISO 9001 standard, where organization's performances are much better developed.

Generally speaking, management standards are designed to create better environment and conditions for company's business, but a poorly designed integrated management system often leads to overlapping and fuzziness. Although international management standards are designed to be compatible with each other so their integration could be possible with ease, there are still certain problems present in the implementation of integrated management systems. As stated in [11] the most serious problems that can emerge in the process of management systems integration are the complexity of internal management, reduction of the management effectiveness, the burden of cultural mismatch, resistance and hostility of employees and an increase of management costs. Although these problems may occur, the overall impact of management systems integration on organization's performances is positive, as shown in Table 7.

(I) Class		Mean	Mean Difference (I-J) Std. Error	ror Sig.	95% Confidence Interval	
	(J) Class Di	Difference (I-J)			Lower Bound	Upper Bound
9001	9001 + 14001	-48.785 [*]	16.037	.004	-81.05	-16.52
	9001 + 14001 + 18001	-59.454 [*]	14.795	.000	-89.22	-29.69
9001 + 14001	9001	48.785 [*]	16.037	.004	16.52	81.05
	9001 + 14001 + 18001	-10.669	17.858	.553	-46.60	25.26
9001 + 14001 + 18001	9001	59.454 [*]	14.795	.000	29.69	89.22
	9001 + 14001	10.669	17.858	.553	-25.26	46.60

Table 7. ANOVA post hoc analysis

*. The mean difference is significant at the 0.05 level.

The graphic display of obtained results is given in Figure 1.

Figure 1. Development of organization's performances

6. CONCLUSION AND DISCUSSION

This study empirically examines the extent to which implementation of integrated management systems impact business performance of the organizations. Results demonstrate that a commitment to quality, environment and health and safety according to international management standards have great effect on organization's performance. It has been shown that all correlations with identified key performance indicators, e.g. constructs, were significant.

Closer examination of results allows conclusions that refer to a correlation between standardization and effective risk management system in organizations [12].

Avoiding and mitigating of risks in company's processes is directly linked to mitigation of nonconformities of all kinds. It can be established that until the 2015th risk management was not incorporated into the structure of standard ISO 9001, so the survey proved that companies that have implemented only quality management system had poorly developed risk management system, which caused appearance of nonconformities and lower company's performances. Standards ISO 14001 and OHSAS 18001 always had explicit requirements regarding the risk assessment and risk treatment, so every company that have implemented environmental management system or occupational health and safety management system has certain knowledge and praxis in risk management. Therefore the increased maturity of risk management systems in those companies generated their better performances.

7. REFERENCES

- J.C. Anderson, M. Rungtusanatham, R.G. Schroeder, S. Devaraj; Path analytic model of a theory of quality management underlying the Deming management method: preliminary empirical findings; Decision Sciences, 26 (5) (1995), pp. 637– 658
- [2] S.L. Ahire, D.Y. Golhar, M.A. Waller; Development and validation of TQM implementation constructs; Decision Sciences, 27 (1) (1996), pp. 23–56
- D. Dow, D. Samson, S. Ford; Exploding the myth: do all quality management practices contribute to superior quality performance?; Production and Operations Management, 8 (1) (1999), pp. 1–27
- [4] D. Samson, M. Terziovski; The relationship between total quality management practices and operational performance; Journal of Operations Management, 17 (1999), pp. 393–409
- [5] R.B. Handfield, J. Jayaram, S. Ghosh; An empirical examination of quality tool deployment patterns and their impact on performance International; Journal of Production Research, 37 (6) (1999), pp. 1403–1426
- [6] ISO 9001:2015 Quality management systems Requirements, International Organization for Standardization, Geneva, Switzerland, 2015.
- [7] SO 14001:2015 Environmental Management Systems Requirements with Guidance for Use, International Organization for Standardization, Geneva, Switzerland, 2015.
- [8] BS OHSAS 18001:2007 Occupational Health and Safety Management Systems – Requirements, British Standards Institution, 2007.
- [9] Cerepnalkovska, S., Risk based model of integrated management system improvement, PhD thesis, 2016.
- [10] Nunnaly, J., & Bernstein, H. (1994). Psychometric theory. New York: McGraw-Hill Inc.
- [11] S.X. Zeng, Jonathan J. Shi, G.X. Lou. A Synergetic Model for Implementing an Integrated Management System: An Empirical Study in China, Journal of Cleaner Production 15 (2007): 760-767
- [12] S. Vulanović, M. Delić, B. Kamberović, I. Beker, S. Čerepnalkovska; Influence of Integrated Management System on Risk Management System; International Convention on Quality 2017. Belgrade, Serbia