
XVII International Scientific Conference on Industrial Systems (IS'17)

Novi Sad, Serbia, October 4. – 6. 2017.
University of Novi Sad, Faculty of Technical Sciences,

Department for Industrial Engineering and Management
Available online at http://www.iim.ftn.uns.ac.rs/is17

IS'17

System for automatic creation of equivalent task variations
in the student tests

Milana Novković

(Teaching Associate, University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000
Novi Sad, Serbia, mnovkovic@uns.ac.rs)

Srđan Sladojević

(Assistant Professor, University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000
Novi Sad, Serbia, sladojevic@uns.ac.rs)

Abstract

Modern educators commonly use tests as a form of knowledge evaluation. However, they face a
problem of creating multiple variations of a single test. In order to keep the balance between
distribution and difficulty of tasks and also maintain the basic test structure and equivalent level of
expected knowledge per variation, educators face a time-consuming challenge.

Specialized Java template based engine was used in order to minimize time consumption and simplify
the process of test creation. The system enabled the creation of reusable templates as a basis on
which test tasks were formed. Reusability of templates and variation of certain template parts as
functionalities of this system provided test tasks that were slightly modified in different test variations.
In this paper, equivalence of task distribution, difficulty and time consumption in the process of
creating test variations was reviewed. The whole process was based on test cloning and enabling
equality in task distribution by using same based templates to design diverse but equivalent tasks in
test variations.

Key words: Test variations, Java template engine, equivalence of test tasks, programming

1. INTRODUCTION

Test as a form of knowledge evaluation is the most
widely spread form of assessment in higher education.
Traditionally, tests are bounded to specific subject or
area. Here, the process of assessment of students
knowledge in the area of programming in C# language
is addressed. The process of testing from the teacher's
point of view, difficulties in testing programming
knowledge, the complexity of tests and time
consumption during test generation process are
observed in the paper.

In order to test programming knowledge, tests
consisting of tasks in a form of small code examples
that implement basic conceptual knowledge and
operations are used.

During the development of this kind of tests, teachers
face many challenges. Developed tests must exemplify
valid assessment measures that correspond to the
defined testing time frame. Besides complying to the
language syntax and semantics, basic concepts must
be implemented in such tasks in a manner they
represent good examples of using language features on

an expected level of difficulty. Furthermore, the
teachers must be confident that the results of the tests
are valid and can rely on the fact that unallowed actions
like cheating did not contribute to the false
representation of the results. Having that in mind
existing problems grow when in order to minimize such
actions teachers introduce multiple variations of a single
test. Not only they need to come up with multiple test
variations, they also need to keep basic structure, the
same level of difficulty and expected knowledge among
different variations. Distribution of tasks becomes an
issue too. Tasks must be distributed equally but in the
same time, they should be structurally aligned with
slight differences. While trying to keep up with all of the
mentioned necessities time consumption stands out as
the most prominent problem. In order to get over these
problems, a code generation system, which is able to
generate tests in the area of programming is developed.

A new approach, test generation based on templates
that can be randomized and used an unlimited number
of times is introduced. Randomization applies to
replacing certain parts of templates with random values.
Templates at the end of the process act as small pieces

222

Milana Novković et al.

of code that stand for test tasks. Generation of
templates and their randomization is based on a Java
template engine incorporated into the developed
system. The system also enables test cloning, editing
and provides different variations of the same test task in
a manner that enables the teacher to maintain basic
test structure and level of difficulty while complying to
the language syntax and semantics ultimately saving
time in the process of test creation.

The rest of the paper is organized as follows: Section 2
deals with the related published work. Implemented
technologies and an approach used in system
development are described in Section 3. Section 4
deals with discussion referring to system contributions
to the process of test generation and lastly section 5
addresses our conclusions.

2. LITERATURE REVIEW

Integrated and structured knowledge is a basis for a
deep level of understanding in any particular subject or
content area. In order to measure the level of
understanding of some particular subject or area,
educators in any level of education use different
knowledge evaluation methods. In higher education
assessment of students knowledge can be done using
different methods such as exams, essays, oral
presentations, group project and etc. Those methods
are used as a meaning to verify outcomes of the
learning process [1]. Empirical evidence provided by
Miller and Parlett in [2] indicates that student behavior
and learning process are also influenced in great
measure by assessment.

Fairness of assessment process is pointed out as the
key aspect of assessment and is brought into contact
with validity and reliability of assessment process. As
achievement tests are still the significant part of the
assessment process and in some cases main methods
of assessment the aspect of fairness in testing is in
question when multiple variations of the single test are
given [1]. All thing considered, educators face a
challenge and therefore really on the process of
standardization, le standardized tests. Standardized
achievement tests bring difficulty in terms of choosing
test items that correspond to defined testing times, are
good measures of particular content area and comply
with the level of expected knowledge and skills in the
domain [3]. Adding that to a need to produce multiple
variations of a single test leads to increased time
consumption that educators face in process of
developing such tests. Also, the balance between task
distribution and difficulty must be kept throughout all
variations in order to achieve fairness. This paper
addresses the matter of testing students programming
knowledge through using standardized achievement
tests.

The process of acquiring programming knowledge is
highly complex and requires the variety of cognitive
activities, understanding, conceptual knowledge and
the structuring of basic operations like conditional
statements, loops and etc [4].

Rogalski and Samurçay in [4] address the problem
teachers are facing during learning beginners to
programming by implementing the special framework in
order to understand why certain programming concepts
and procedures are difficult to learn and teach. Linn and
Dalbey in [5] describe the ideal chain of learning
programming by first introducing language syntax and
semantics, then combine language features with
required programming skills to develop programs and
finally develop problem-solving skills.

Winslow in [6] points out that the key aspect of learning
to program is in practicing and adopting basic facts,
features, and rules which enable problem-solving in
specified areas. He encourages starting with simpler
problems, practicing and aiming to more complicated
ones with reference to that it is necessary to
understand the essence of the problem. In other words,
students must have a good knowledge of language
syntax and basic programming concepts as a basis to
better problem-solving.

In order to test students programming knowledge, this
paper refers to tests consisting of small pieces of code
implementing basic operations, facts and programming
rules. That small piece of code serves as test tasks
where students are being questioned what would be the
output of that piece of code if it would be executed in
the specified environment. In order to answer, students
must have the good understanding of basic
programming concepts and rules.

In [7] and [8] Pathak, Brusilovsky and Sosnovsky
address the problem of the same set of questions
usage for the whole class. They address the cheating
problem as a problem that prevents teachers to rely on
the results of the test. In order to test students in a way
that cheating is minimized, multiple variations of a
single test were used. A small piece of code that
represents task of the test is slightly altered and spread
across multiple variations of a single test. Pathak and
Brusilovsky also developed a system that allows
teachers to create parameterized questions for the quiz.
Quiz relies on the teachers to provide the core content
of the question which represents parametrized fragment
of code. Our system runs on the same principle.
Teachers provide the core template which acts as the
basis of test task with parts that can be randomly
changed by the system. Essentially it is a parametrized
piece of code that is created by the teacher and
randomly filled with different parameter values. By that,
the main structure of the task is maintained but
modified in certain parts by the system. Once the
teacher provides the template, that same template can
be filled with randomized values and used multiple
times, every time producing different output.

Brusilovksi and Sosnovsky in [8] describe a system for
generating parameterized exercises for C language that
automatically evaluates given student answers. The
system by the name QuizPack enables web-based
quizzes through which teachers can evaluate student
knowledge, but students also can improve their
knowledge of semantics and overall programming skills.
The system is also based on templates with

223

Milana Novković et al.

IS'17

parametrized pieces, where one template can produce
a large number of different questions [8]. In our case
system can randomize values of given parameters as
many times it is necessary thus also giving a lot of
different questions based on the same structure
provided by a single template. Different template
outputs brought from one template represent variations
of one test task through multiple test variations. One
created template can be used not only for one course
or test, but multiple courses and tests thus decreasing
the overall time needed for creating multiple tests and
their variations.

3. MATERIALS AND METHODS

The implemented technologies and capabilities of the
developed system are described further in detail. The
focus is being set on the process of template creation
and it benefits.

3.1. Implemented technologies

The system described in this paper represents a Java
application which is thoroughly based on the REST
(Representational State Transfer) which is an
architectural style with lightweight communications
between the producer and consumer [9][10]. RESTful
web service provides resources and clients to
exchange resource representations as parts of their
interactions [9][11]. Since the system is web-based this
service enables sending HTTP requests to Web pages
in order to obtain the specified resources [9].

Part of the system in charge of generating test tasks in
form of templates is based on an Apache FreeMarker
template engine [12]. Freemaker is a free template
engine in a form of a Java library, which provides
powerful syntax for generation of templates. This
template engine is an open-source software that
enables programmers to embed the source code into
different products [13]. Template engine operates on
the specific data model which enables generation of
textual templates that can output different
representations of data in a form of HTML,
configuration files, source code, etc [12][14]. The
template engine is employed with the purpose of
creating templates, which would eventually produce the
source code. Due to its readability and adaptability, this
template engine is used for many purposes. In [15]
FreeMaker template engine is used as a basis for
constructing the parser for the kernel of the compiler
subsystem. It purpose varies from generating Software
Factory for pervasive systems over rendering HTTP
replies of emails to modeling and implementation of
catalog cards [13][15][16]. The system described in this
paper essentially enables code generation driven by the
described template engine. Apache FreeMaker
template engine brings many advantages into the
system that incorporates its functionalities. It provides
general-purpose templates much faster than other
similar tools and enables templates to be loaded and

reloaded during runtime without the need to redeploy
the application [17].

3.2. Code generation system: The approach
and the system

The process of developing the code generation system
began with analyzing previously existing tests related to
the programming area in order to identify basic tests
and task structure. Existing tests consisted of a random
number of tasks, each of which contained five or more
lines of code. Student should give the answer referring
to the output (which would be generated if that piece of
code would be executed). Two of those tasks are
presented in Figure 1.

Figure 1. Example of test tasks written in C# programming

language

The challenge was to design a system that can work for
a large variety of programming questions wrapped in
the form of small pieces of code. The system is based
on the idea that each task that it produces should
maintain basic structure, but differ in some parts that do
not affect the structure but only the solution of the task.

Developed system has a user interface which enables
teachers to create the desired template by selecting
options from the list and placing them in specified
locations. Each option from the list is a piece of the
template, that reflects some basic programming
concept, for example, variable, any type of loop,
collection, array, etc. Figure 2 displays one part of the
user interface intended to be used for template
creation.

Figure 2. User interface for creating templates

The user first selects the desired row from the list on
the left. Selected row or line on the left side represents
the place where the selected template item from right
side list would be placed.

Every template has a specified name by which it can be

224

Milana Novković et al.

identified and the number of points that task created
with that template would bring in the test.

In order to facilitate and provide reusability of created
templates system enables placement of created
templates into MySql database. Template content,
name and number of points it brings are stored in the
database. This feature enables reuse and editing of
templates. One such template created by the described
user interface is displayed in Figure 3. The displayed
template is a template generated on the basis of the
task presented on the left side in Figure 1 displayed
above in the text.

Figure 3. Example of the template based on test task

displayed on the left side in Figure 1

Once made, the template is permanently stored in the
database and can be used multiple times, each time
giving different variations of the task.

Motivation is to create a system that would allow
teachers to create one template which would serve as a
basis for multiple test tasks nor then just store fully
developed tasks to the database. Hence, templates
contain small pieces of the text that can be
programmatically randomized and changed by the
system. As seen in Figure 2 those pieces are placed
inside curly brackets preceded by a dollar sign.
Through multiple variations those values are changed
but the basic structure of the task remains the same.

RESTfull services on which this system is based
provide that functionality of filling the template with
randomized values, but also storing the template into
the database and editing the template. The teacher only
provides the core of the task, and the system does the
rest - randomization of a template. As a result of
template randomization, the final tasks are generated.
Generated tasks can be later used in process of test
creation by simply selecting the task which would be
placed into the test. Figure 4 display just some of the
variations created by the template represented in
Figure 3.

Figure 4. Example of task variations based on the template

from Figure 2

The current version of the system supports
programming related tasks based on C# programming
language.

Besides mentioned capabilities, system also enables
the teacher to incorporate created templates into tests.
Figure 5 displays the process of incorporating created
template into the test. The user selects the button with
the title corresponding to template creation and in the
newly opened window selects the desired template.
Once the template is selected, and selection is
confirmed, the system randomizes the values and
displays the template as the test task as shown below.

Figure 5. Process of test creation

Once the test is created it can be cloned. Cloning in this
context refers to keeping the test structure and
distribution of tasks, and since tasks are basically
templates that are randomly filled by the system, the
whole test can be replicated in a way that each
individual task is just randomized again and placed in
test variations.

Template creation as application feature is just a small
part of the system. The system also incorporates a
large database of different kinds of programming
questions, starting from theory questions, across
algorithms to questions referring to number systems. It
also provides generated tests in a form of PDF
documents that can be downloaded.

4. RESULTS AND DISCUSSION

Described system was originally developed to provide
teachers an easier way of creating multiple test
variations and consume less time in the process. It is
started from the general idea to keep the balance
between distribution and difficulty of test tasks.
Teachers as creators of the template are the ones that
determine the difficulty of the task, make sure that the
task represents the appropriate measure for assessing
knowledge in the subject area and corresponds to the

225

Milana Novković et al.

IS'17

area that is being tested. In order to create the test, the
teacher has to provide templates that can be used as
test tasks.

The process of template creation leads to less time
consumption, which depends on the size and the
number of templates. But on the other hand, teachers
can use already generated templates, previously
stored in the database, as test tasks, thus conserving
time. Furthermore, every template can also be edited
and with slight moderations provide a different task. In
addition, once the test is created and all templates are
placed as test tasks, it is only a matter of seconds to
create multiple variations of that test.

The features of the system also enable teachers to
create different kinds of templates and ultimately after
inserting them to the test, download created test in a
form of the PDF document. Furthermore, since the
tasks are just moderate changes of the specified
template, the level of the expected knowledge does not
differ across multiple test variations. Thus, equal
conditions of testing are provided together with the fact
that teacher can rely more on the validity of the results.

In the process of template generation, the system
enables teachers to generate lines of code without
writing any of them. Teachers just select code blocks
they want to implement as parts of the template.

Other advantage lies in the fact that the system is web-
based and can be accessed from any location with the
condition that the Internet connection is provided. The
teacher can also input new questions related to other
areas of programming and use them to generate tests.
So, not only tests with templates can be created, but
also different combinations of that questions and
templates can be used as test tasks.

5. CONCLUSION

The system for automatic creation of equivalent task
variations in the student tests including its development
process is described in this paper.

System uses templates for tasks modeling. Generated
templates increase the productivity of teachers
enabling them not only to conserve time but produce a
range of task variations with same structure and level
of difficulty. The system also enables task generation
without writing any lines of code, therefore takes care
about language syntax and semantics minimizing the
effort compared to writing code directly.

Test generation described in this paper collides with
the aspect of fairness in the process of assessment
where tests are equally structured, require the same
level of expected knowledge per variation and maintain
balanced task distribution among multiple test
variations.

It is planned for the system to be expanded by adding
some new features. By implementing the language

interpreter, a system could interpret task and thus
produce solutions or outputs of the tasks. As a result,
teachers could not only generate tests but their
solutions too.

One further step would be an expansion of the system
in another direction. With an embedded interpreter, the
system could be an excellent learning and practicing
platform for the students. Not only they could extend
their knowledge by practicing on multiple different
examples, they could benefit from the randomization
process by seeing how one piece of code behaves with
slight changes and compare their answer with the
answer provided by the system. Finally, it is planned for
created system to be incorporated into the process of
test creation for some subjects at the University and
evaluate the time consumption in different situations
whether the tests are created from the beginning, edited
or cloned.

226

Milana Novković et al.

6. REFERENCES

[1] McDowell, L. (1995), “The impact of innovative assessment on
student learning”. Programmed Learning, 32(4), pp.302-313.

[2] Miller, C.M. and Parlett, M. (1974), “Up to the Mark: A Study of
the Examination Game”.

[3] Popham, W.J. (1999), “Why standardized tests don't measure
educational quality”. Educational leadership, 56, pp.8-16.

[4] Rogalski, J. and Samurçay, R. (1990), “Acquisition of
programming knowledge and skills”. Psychology of
programming, 18(1990), pp.157-174.

[5] Linn, M.C. and Dalbey, J. (1989), “Cognitive consequences of
programming instruction”. Studying the novice programmer,
pp.57-81.

[6] Winslow, L.E. (1996), “Programming pedagogy—a psychological
overview”. ACM Sigcse Bulletin, 28(3), pp.17-22.

[7] Pathak, Sharad, and Peter Brusilovsky. (2002), "Assessing
student programming knowledge with web-based dynamic
parameterized quizzes." Proc. of ED-MEDIA.

[8] Brusilovsky, P. and Pathak, S. (2002), “Assessing student
programming knowledge with web-based dynamic
parameterized quizzes”. In EdMedia: World Conference on
Educational Media and Technology (pp. 1548-1553). Association
for the Advancement of Computing in Education (AACE).

[9] Vinoski, S. (2007), “REST Eye for the SOA Guy”. IEEE Internet
Computing, 11(1).

[10] “REST (representational state transfer)”, available at:
http://searchmicroservices.techtarget.com/definition/REST-
representational-state-transfer (accessed: 05 June 2017).

[11] Sheth, A.P., Gomadam, K. and Lathem, J. (2007), “SA-REST:
Semantically interoperable and easier-to-use services and
mashups”. IEEE Internet Computing, 11(6).

[12] "What is Apache FreeMarker?", available at:
http://freemarker.org/ (accessed: 03 Jun 2017).

[13] Radjenovic, J., Milosavljevic, B. and Surla, D. (2009), “Modelling
and implementation of catalogue cards using
FreeMarker”. Program, 43(1), pp.62-76.

[14] Muñoz, J. and Pelechano, V. (2006), “Applying Software
Factories to Pervasive Systems: A Platform Specific
Framework”. In ICEIS (3) (pp. 337-342).

[15] Van Weert, P., Schrijvers, T. and Demoen, B. (2005), “KU
Leuven JCHR: a user-friendly, flexible and efficient CHR system
for Java”. In Proceedings of the 2nd Workshop on Constraint
Handling Rules (pp. 47-62). Deptartment of Computer Science,
KU Leuven.

[16] Rosenberg, F., Curbera, F., Duftler, M.J. and Khalaf, R. (2008),
“Composing restful services and collaborative workflows: A
lightweight approach”. IEEE Internet Computing, 12(5).

[17] Benato, G.S., Affonso, F.J. and Nakagawa, E.Y., “Infrastructure
Based on Template Engines for Automatic Generation of Source
Code for Self-adaptive Software Domain”.

227

