
XVII International Scientific Conference on Industrial Systems (IS'17)

Novi Sad, Serbia, October 4. – 6. 2017.
University of Novi Sad, Faculty of Technical Sciences,

Department for Industrial Engineering and Management
Available online at http://www.iim.ftn.uns.ac.rs/is17

IS'17

Lessons learned from a partial replication of an experiment
in the context of a software engineering course

Robert Ramač
(University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Serbia,

ramac.robert@uns.ac.rs)

Itir Karac
(M3S Research Unit, University of Oulu, Finland, Itir.karac@oulu.fi)

Burak Turhan
(Department of Computer Science, Brunel University London, United Kingdom, burak.turhan@brunel.ac.uk)

Natalia Juristo
(Escuela Tecnica Superior de Ingenieros Informaticos, Universidad Politecnica de Madrid, Spain,

natalia@fi.upm.es)

Vladimir Mandić
(University of Novi Sad, Faculty of Technical Sciencies, Trg Dositeja Obradovića 6, Serbia,

vladman@uns.ac.rs)

Abstract

Replications are an integral component of experimentation through which the validity and reliability of
the observed outcome in a previous experiment can be probed. In a strict replication, the experiment
is executed in the same conditions as the original by following the same protocol and thus the
evidence is strengthened statistically by means of increased sample size. Another objective for
running replications is generalizing the experimental results beyond the limitations of one study and its
context. For this purpose, certain elements of the original experiment, such as experimenters,
experimental objects, and construct operationalization are altered and their impact is investigated.
This paper presents lessons learned from a replication that was conducted as a part of an
undergraduate university course in Serbia. The focus of the experiment was investigating the
effectiveness of writing tests during the development process. The original experiment investigated the
effectiveness of test-first programming and was conducted in Italy (Politecnico di Torino) with third-
year computer science students during an intensive Java course. Lessons learned from this partial
replication are that the given task descriptions and structure has an impact on the experiment outcome
and that variations in metrics collection can occur when multiple researchers analyse the data, which
requires metrics consolidation.

Key words: software testing process, empirical software engineering, controlled experiments, partial
replication, software development process

1. INTRODUCTION

Today research in software engineering (SE) is
considered to be of great importance. Every good
research in the field of SE must be based on some
evidence, and one of the ways to collect evidence is
through experimentation. In SE experimentation can be
quite difficult, and one reason for that is that there is a
large number of context variables and creating a
cohesive understanding of experimental results requires
a community of researchers that can replicate studies,
vary context variables and build abstract models that
represent the common observation about the discipline
[3]. Empirical methods in SE are gaining popularity in
the last few years and experimentation is being moved
to the centre of the research process [1,2,3]. This is
because there is a need to somehow validate
assumptions or claims and the need to verify the

research results. Some authors claim that
experimentalism in SE is necessary and that common
wisdom, intuition and speculation are not reliable
sources of credible knowledge, thus experimentation
can help build a reliable knowledge base by collecting
various evidences about the phenomenon under
observation [2,3].

Empirical work is complex and time consuming,
especially in SE. As Basili et al. say “We can not a priori
assume that the results of any study apply outside the
specific environment in which it was run.” [3]. In other
words, the uniqueness of the SE research is intricately
tied with the context. Software engineering is specific
because every new software product is different from
the last, so these products do not provide a large set of
data points that would permit sufficient statistical power
for confirming or rejecting hypothesis [3]. Therefore, the

198

 Robert Ramač et al.

IS'17

focus of the SE research is always on a process and
often the human factor has the significant effect on the
findings. Another characteristic of SE is that empirical
investigators are presented with a challenge to design
the best study that the given context allows and are
expected to generalize the research results, with a
certain level of validity [3].

In today’s scientific community experiments are
considered to be an indispensable part of the
experimentation process and scientific process as they
provide a way to test what effect some variables have
on the variables in observation and as such confirm or
refute some hypothesis that the researchers previously
set. However, in SE research it is not just about
identifying the causal relationships but gaining insight
into the context, variables, various effects and so on
[1,2].

In order to generate significant and valid results
researchers have to use various empirical methods that
should have a strict design and a precisely defined
procedure to follow. Therefore, it is considered a good
practice to plan the experimentation process in detail to
avoid certain bumps in the road. During the planning of
an experiment it is always helpful to have some
references in the sense of best practices and problems
that other researchers faced [1,3,10,14].

When it comes to the practitioners there is an ongoing
debate whether if using students as research subjects
is acceptable or not. One of the most common
scenarios in which students are used as research
subjects is within the context of a university course.
There are various viewpoints on this subject and some
researchers are in favour of using students as subjects
in experiments while some are against it [10,11,12,13].
Some benefits are: training junior researchers, gaining
data to prove or refute hypothesis, education, industrial
relevance, hands on practical experience and etc.
[11,12,13]. On the other hand, the drawbacks are
usually tied to validity issues in the context of
experience, skills and so on [10].

Experiments with students as subjects have shown to
be particularly useful for pilot experiments before they
are carried out in the industrial environment [11]. Carver
et al. conducted an overview of various benefits and
costs of using students in experiments [11]. According
to Carver et al., using students is mainly beneficial to
researchers as it helps with obtaining preliminary
results, is vital to showing the industry the importance of
research, fine tunes the research before it is conducted
in some company, helps with training junior researchers
etc. [11]. Other studies can neither reject nor accept the
hypothesis on the difference between using students
and industry people in experiments [12]. Höst et al.
argue that the only minor differences between students
and professionals can be shown in their ability to
perform small tasks of judgement [13]. With everything
said using students as research subjects is something
that should be taken into account when conducting
research in SE, even if there are certain limitations to
this practice.

This paper presents lessons learned from a partial
replication of an experiment in the context of a software
development course. The replication investigated the
effectiveness of a specific software development and
testing technique. The replication was designed as
practical tasks that the students did within the course
and on which they were graded in order to pass the
course, i.e. the experiment was embedded within the
course itself. Various lessons are drawn out of the
replication process itself and from the experience of
working with students.

The rest of the paper is organized as follows.
Background about experiments and related terms are
given in Section 2. In Section 3 a description of the
general setup of the replication is provided, while
Section 4 contains the lessons learned from the
replication. Finally, Section 5 is used to give some
conclusions about the material presented in this paper.

2. BACKGROUND AND RELATED WORK

Although experiments are considered to be a vital part
of SE research [1,2,3], and because of the uniqueness
of SE one of the ways to increase the validity of
research results is through the process of repeating
experiments. This process represents a core
component of the experimentation process [1]. The
importance and value of experiment repetitions has
been widely recognized in various scientific disciplines,
and from a scientific viewpoint not conducting a
sufficient amount of experiment repetitions can lead to
the acceptance of not robust enough results [2]. In SE
experiment repetitions can have many purposes like:
verifying that researchers do not influence the results,
that the results are independent of the experiment site,
verification that the original experiment results are not a
product of chance and more [2]. In what follows, basic
experimental terminology and concepts, along with
some related work on using students in SE experiments
are introduced.

2.1 Terminology

Experiments can be considered as controlled
experiments when every variable and condition is held
in control by the researchers. In other words, it
represents a closely monitored and controlled study in
which an intervention is deliberately introduced in order
to view its effects. The effect of independent variables
on the dependant variable is measured during the
application of treatments on the independent variables
[14].

Experiment design represents the way an experiment is
structured, and describes how the experiment is
supposed to run. The most important parts of the
experiment design are the definition of variables
(dependent and independent), and treatment that will
be applied. There are various experiment designs, and
the one used in this paper is the crossover design [15].

The crossover experiment design represents an
experiment design in which values for independent

199

Robert Ramač et al.

IS'17

variables are switched. In this way the risk of subjects
being biased to variable values is eliminated [15].

A quasi experiment is considered to be an experiment
in which the researcher does not have full control of
every aspect of the experiment. Often it leads to the
inability to obtain a satisfactory sample [14]. Generally,
quasi experiments are typical in SE because of the
researcher’s inability to control every factor.

Experiment replications are repeated executions of the
original experiment. Experiment replications serve to
consolidate knowledge that is built upon some
experimentation results [5]. By running replications of
some experiment and confirming the results of the
original experiment researches are one step closer to
inferring that such results are regularities existing in the
phenomenon that is under study by the experiment [1].
Running more and more replications of one experiment
further increase the credibility of the results [4]. There
are many classifications of replications [1,2,3,6,7]. For
example, there are strict replications that are used in
order to replicate a base experiment as precisely as
possible, differentiated replications that alter the
aspects of the original experiment in order to test the
limits of that studies conclusions, partial replications
that have the same goal in focus as the original
experiment but in some way alter the design or
procedure of the experiment etc. [2, 16]. Also, some
researchers strive to conduct as many replications as
possible in one study in order to widen the sample as
much as possible and by confirming the results try to
generalize them to the whole population that lies
beneath the study [9]. It is common thought in literature
that more replications whose results are in compliance
with the base experiment results equal more reliable
results about the phenomenon under study.

2.2 Experiments with students

Software engineering experiments require subjects to
apply treatment, e.g. to apply a software development
technique. In SE research these subjects come in the
form of professionals who work for some company or
students who attend a certain course. This papers main
focus is on running experiments with students as
subjects [10,11,12,13].

In literature there are various mentions of this matter
and Table 1 shows some of the main characteristics
(benefits) with which this paper can relate to.

Table 1. Benefits of using students as subjects

Ref Characteristic Description

[11]
Obtaining evidence
needed to confirm or
refute hypotheses

New hypothesis need to
undergo empirical validations
before their use in the industry

[11]
Train junior
researchers

The academic environment
tends to be more “soft” for
junior researchers to generate
some experience

[11]
Education on modern
topics

Using the research to train
students in some popular
technologies and techniques

[11] Industrial relevance
Students gain some insight into
various industrial problems

[11] Hands-on practice and Students gain first hand

empirical methods
usefulness

examples of some real world
problems instead of just
theoretical classes. Also
students are demonstrated the
usefulness of using quantitative
methods

[13]
Mimic professionals
using students in
experiments

Minor differences between
students and professional lead
to good test runs of the
experiment

Besides the characteristics shown in the table, in
literature, there is mention of some drawbacks to using
students as subjects. One of the main drawbacks is the
generation of validity problems for formal experiments.
Some researchers and practitioners claim that the use
of students as subjects reduces the practical value of
an experiment because of validity issues such as the
lack of experience and skills. In other words, authors
argue that professionals are a more credible source of
data because of their knowledge base, and that results
gathered from students might not be suitable for
generalization. Also there are those that neither side
with, nor discourage the use of students as research
subjects, and believe that the students are the next
generation of professionals and that they are really
close to the population of interest [10, 11, 12, 13].

The replication that is the topic of this paper used
students as research subjects, as did the original
experiment that was conducted in Torino, Italy. The
focus of the original experiment was on the
effectiveness of the test-first approach to programming
as opposed to the test-last approach [8]. The
researchers evaluated the external quality and
programmer productivity in the context of incremental
development and an undergraduate object-oriented
course. Researchers used a standard design with one
factor and two treatments, where the treatments
corresponded to the two development techniques (test-
last and test-first approach). The study consisted of 35
students who were at their third year of studies who
were split into two groups. During the experiment one
group was compared with the other group. The main
result of the experiment was that the test-first approach
produces more tests then more conventional test-last
approaches, and thus a higher level of productivity is
reached. Also the results showed better decomposition
levels as well as improved understandability of
underlying requirements. The researchers pointed out
the need for a larger sample then 35 subjects as well as
new supporting tools for process conformance [8].
Afterwards, this experiment was replicated on several
occasion: University of Oulu, Finland [19, 20] and
University of Basilicata, Italy [9].

3. EXPERIMENTAL SETUP

As mentioned earlier the focus of this paper is to
present and reflect upon lessons learned from a partial
replication conducted in the context of a software
engineering course. The replication was carried out at
the University of Novi Sad, Serbia and was conducted
with students on their second academic year.

200

 Robert Ramač et al.

IS'17

The replication was designed as a crossover
experiment with two sessions of repeated
measurements in which students were tasked with
conforming to test-last and test-first software
development process respectively. There were two
tasks in total where each task represented a small API
that needed to be developed by the students in the
Java programming language. Each task had detailed
explanations and some initial code for the students to
start with. Task 1 was about developing a score keeper
for a bowling game taken from [8], while Task 2
represented an API for driving a small vehicle in two
dimensional space. The students were split into four
groups where each group first used one development
process and during the second session the next
development process in order to solve the given task.

Before the first session the students were trained in the
software development and testing technique (test-last)
required for the first treatment. Also, the experiment
environment was set up. On every lab computer the
Eclipse IDE was installed along with the Besouro1
plugin used for monitoring compliance with a specific
technique. The treatment for groups was randomly
selected by flipping a coin.

During the first session two groups were given task 1,
while the other two groups were given task 2. In this
session both groups implemented the test-last
approach. Because of the course schedule the groups
did the tasks sequentially over the course of two days.

After the first session the metrics for productivity, test
code coverage, code quality and number of written tests
were extracted from student code. The extractions were
done in part automatically using the plugin and Python
scripts and in part manually by two researchers. The
metrics that were extracted manually needed to
undergo a consolidation process because both
researchers extracted the metrics separately from the
whole sample and on site. After the metrics were
extracted the students were given feedback of how they
did in the first task in the form of a grade. The grade
was calculated based on the metrics extracted and
basically depended on two components: quality of
written code and conformance to the applied software
development technique. Afterwards they were trained in
the test-last software development technique and given
the main pointers of how to adhere to the process.

During the second session the tasks were switched
between groups and the students implemented the test-
first approach in order to solve the tasks.

After the second session the students were again given
feedback in the form of a grade and the data analysis
process for the whole experiment was ready to begin.
This time the metrics were extracted on site by one
researcher, while the second researcher extracted the
metrics off site. This time the consolidation of extracted
metrics was done over Skype.

1 Besouro plugin (accessed: 08.02.2017.)

https://github.com/brunopedroso/besouro

Table 2 illustrates this crossover design and task
switching of the experiment.

Table 2. Crossover design task distribution

 Session 1 Session 2

Group 1 Task 1 Task 2

Group 2 Task 1 Task 2

Group 3 Task 2 Task 1

Group 4 Task 2 Task 1

What differs in this replication from the original
experiment, and the reason it is partial is that the
experiment had to undergo some minor changes in
order to accommodate the course under which it was
conducted as a replication. The main difference
between the replication and the original experiment is
that the replication is designed using a cross
experiment design technique, as well as repeated
measurements for students where each student was
compared to him/herself. Also one important
modification that makes this replication partial was the
fact that the sessions were treated as tests for students
and the results of the first session were announced to
the students in order to grade them. All of the
modifications were carried out in such a way so they do
not change the base of the original experiment. The
main question that arose from these modifications was
will the feedback to students in some way impact the
second session.

4. LESSONS LEARNED

During the experiment researchers took note of some
observations that could be useful for others and should
be taken into account for future replications of this
experiment.

Time constraint – One of the modifications in the
experiment was to the time that was given to subjects to
complete the task. In the replication the subjects had
one and a half hours to complete the given task. This
was proven to be insufficient and the students
complained that they had little time to complete the task
relative to their coding skills. This was also visible in the
data analysis process because in some cases the
subjects were on the right track and then just stopped
because of insufficient time. Based on this observation
the recommendation for future replications of this
experiment would be to extend the time.

Task understandability – One of the tasks that was
given to subjects was to create and test a bowling score
keeper program. Because bowling is little to not at all
popular in the region where the replication was
conducted the subjects had trouble with understanding
the rules that were described in the program
specification. The recommendation for future
replications in this case is to keep the scope of the task
but replace its theme based on the region it is
conducted in so that this drawback could be eliminated.

Programming skills – It is well known that skill increases
with practice. As mentioned the students used in this
replication were at their second year of studies and as
far as researchers know they are the youngest. This

201

Robert Ramač et al.

IS'17

has to be factored in when analysing their code and
also if future comparisons with other replications are to
be conducted.

4.1 The measurement process

Measurement and data analysis was conducted by two
researchers. Each of the researchers did the whole
analysis process, meaning that each researcher went
through all the data in order to collect the required
metrics.

Because the results were analysed by two researchers
it was expected for some variations to occur between
the generated metrics. This was proven to be so in the
context of this replication and was considered as a
normal side effect of the two researcher data analysis
process.

In order to analyse the mentioned variation and
agreement between researchers the inter-rater
reliability was measured using the Intraclass Correlation
Coefficient (ICC) [17]. The ICC is computed using the irr
R package [18]. The Computed ICC in Table 3
represents the computed value. The interpretation of
the results is taken from the work of Koo et al. and
states that if the ICC values are close to 0 the reliability
is low as opposed to values being close to 1 resulting in
higher reliability. In other words, the ICC will be high if
there is little variation and small if there is some
significant variation. Table 3 shows various scenarios
for which the ICC metric was computed.

Table 3. Intra-rater reliability

ICC measurement scenario Computed
ICC

Overall ICC: Computed over all
measurements (including both sessions and
tasks)

0.765

ICC on session 1: Computed over the
measurements for the first session

0.599

ICC on session 2: Computed over the
measurements for the second session.

0.862

ICC on Task 1: Computed over the
measurements for task 1 in both sessions.

0.895

ICC on Task 2: Computed over the
measurements for task 2 in both sessions.

0.367

When the results were analysed the largest variations
seemed to be on generating metrics for the second task
during both sessions. It was concluded that all of the
variations were due to the need of implementing some
small corrections to subject code in order to be suitable
for metric generation and different corrections being
applied by the two researchers. Generally, the code
changes were kept to a minimum in order to avoid
significant effect on the student work. Most of the
changes were introduced because the majority of
students did not comply with the API specification, so
the changes needed to wrap the students code in order
to pass the acceptance tests. Because these changes
led to variations the need for consolidation of the results
arose. On the count of this need the two researchers

consolidated their generated metrics and used the
newly generated metrics for further analysis.

The situations where more than one researcher
analyses the generated data brings some advantages
and disadvantages to the scene. For one the main
benefit of having multiple researchers analysing the
data is that the risk of missing some steps or some data
is reduced. Also the researchers can coordinate
between each other and provide help for some
situations in the data analysis process. The main
drawback of multiple researchers analysing the data is
that there is a need for result consolidation but this is
acceptable in such a scenario.

4.2 The impact of intersession feedback

One main concern that the researchers had was will
there be impact of the researcher’s feedback to
students in the first session on the second session.
Because the replication was organized in the context of
a software testing course the treatments were disguised
as tests for students, who had no knowledge of the
experiment that was running in the background. On the
count of the treatments being treated as tests the
students needed to have some feedback in the form of
a grade.

Hypothetically, we assumed the following scenario.
Students who did the first test poorly will be more
motivated for the second test, and that the students that
showed good results on the first test will be more
careless on the second test; i.e.:

H0 - The feedback from the first session will have some
impact on the second session.

For the purpose of this analysis every student was
compared with him/herself and a statistical paired t test
was used in order to generate the needed statistics.

Table 4. Paired t test

t = 0.74549 df = 50 p-value = 0.4595

alternate hypothesis: true difference in means is not
equal to 0

95% confidence interval: [-1.162738, 2.535287]

sample estimates:
mean of differences 0.6862745

Based on the generated metrics and analysis it was
possible to conclude that the feedback from the first test
did not impact the outcome of the second test, and that
it neither motivated or demotivated the subjects. After
these results were analysed a question if the one task
was more difficult for students to implement then the
other arose.

Further data analysis indicated that the tasks indeed
had some impact on student performance in the context
of their grades. The t tests were used in order to
analyse the effect of task switching on student grades.
It is hypothesised that there will be no difference
between sessions and that student grades will not
change. Two tests were conducted, one for the groups
that did task 1 in the first session and then task 2 in the

202

Robert Ramač et al.

IS'17

second, and another for the groups that did task 2 in the
first session and task 1 in the second. The resulting
statistics and generated p-values (0.0008755 and
0.001313 respectively) indicated that the null
hypothesis can be rejected in favour of the alternate
and the fact that tasks indeed had impact on student
performances. It was concluded that task 1 was more
difficult for students to implement then task 2. Task
analysis reviled that students had trouble with task 1
because they did not fully understand the specification
and also because in this task they had to conform to a
certain project template, which was not the case with
task 2.

5. CONCLUSIONS

The main focus of this paper was on presenting the
lessons learned from running a partial replication in the
context of a software testing course. The researchers
conducted a replicated study of the effects of
implementing test-last and test-first software
development techniques. The study was conducted
using students on their second year of studies. The
research itself was designed using a crossover
experiment design with repeated measurements, and
which consisted of two experimental sessions. The
replication was designed in such a way that each
subject was compared to him/herself. After the last
session and the data analysis the researchers were
able to reflect upon the whole research process and
draw out some lessons. The first lesson showed the
benefits and drawbacks of multi-researcher involvement
in the whole data analysis process, while the second
lesson showed the that feedback between sessions
might not have any impact on the following sessions.
This was concluded for this replication, while it might
not hold for other cases and researchers in future
replications should have this in mind.

This replication showed that this form of
experimentation can be imbedded into a university
course and as a part of future work we plan to continue
this practice and to improve the replication design
based on the lessons learned.

6. REFERENCES

[1] Tichy, W. F. (1998). Should computer scientists experiment
more?. Computer, 31(5), 32-40.

[2] Juristo, N., & Gómez, O. S. (2012). Replication of software
engineering experiments. In Empirical software engineering and
verification (pp. 60-88). Springer Berlin Heidelberg.

[3] Basili, V. R., Shull, F., & Lanubile, F. (1999). Building
knowledge through families of experiments. IEEE Transactions
on Software Engineering, 25(4), 456-473.

[4] Juristo, N., & Vegas, S. (2009, October). Using differences
among replications of software engineering experiments to gain
knowledge. In Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and
Measurement (pp. 356-366). IEEE Computer Society.

[5] Shull, F. J., Carver, J. C., Vegas, S., & Juristo, N. (2008). The
role of replications in empirical software engineering. Empirical
software engineering, 13(2), 211-218.

[6] Krein, J. L., & Knutson, C. D. (2010, May). A case for
replication: Synthesizing research methodologies in software
engineering. In RESER2010: proceedings of the 1st
international workshop on replication in empirical software
engineering research.

[7] Van IJzendoorn, M. H. (1994). A process model of replication
studies: On the relation between different types of replication.

[8] Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the
effectiveness of the test-first approach to programming. IEEE
Transactions on software Engineering, 31(3), 226-237.

[9] Fucci, D., Scanniello, G., Romano, S., Shepperd, M., Sigweni,
B., Uyaguari, F., ... & Oivo, M. (2016, September). An external
replication on the effects of test-driven development using a
multi-site blind analysis approach. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (p. 3). ACM.

[10] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W.,
Hoaglin, D. C., El Emam, K., & Rosenberg, J. (2002).
Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on software engineering, 28(8),
721-734.

[11] Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2003,
September). Issues in using students in empirical studies in
software engineering education. In Software Metrics
Symposium, 2003. Proceedings. Ninth International (pp. 239-
249). IEEE.

[12] Runeson, P. (2003, April). Using students as experiment
subjects–an analysis on graduate and freshmen student data.
In Proceedings of the 7th International Conference on Empirical
Assessment in Software Engineering (pp. 95-102).

[13] Höst, M., Regnell, B., & Wohlin, C. (2000). Using students as
subjects—a comparative study of students and professionals in
lead-time impact assessment. Empirical Software
Engineering, 5(3), 201-214.

[14] Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B.,
Karahasanovic, A., Liborg, N. K., & Rekdal, A. C. (2005). A
survey of controlled experiments in software engineering. IEEE
transactions on software engineering, 31(9), 733-753.

[15] Vegas, S., Apa, C., & Juristo, N. (2016). Crossover designs in
software engineering experiments: Benefits and perils. IEEE
Transactions on Software Engineering, 42(2), 120-135.

[16] Mandić, V., Markkula, J., & Oivo, M. (2009, June). Towards
multi-method research approach in empirical software
engineering. In International Conference on Product-Focused
Software Process Improvement (pp. 96-110). Springer Berlin
Heidelberg.

[17] Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and
reporting intraclass correlation coefficients for reliability
research. Journal of chiropractic medicine, 15(2), 155-163.

[18] Gamer, M., Lemon, J., Gamer, M. M., Robinson, A., &
Kendall's, W. (2012). Package ‘irr’. Various coefficients of
interrater reliability and agreement.

[19] Fucci, D., & Turhan, B. (2013, October). A replicated
experiment on the effectiveness of test-first development.
In Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on (pp. 103-112). IEEE.

[20] Fucci, D., Turhan, B., & Oivo, M. (2014, September). Impact of
process conformance on the effects of test-driven development.
In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (p. 10).
ACM.

203

