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Abstract  

This paper presents an effective use of well know prediction method of Heuristic Kalman Algorithm 
(HKA) for solving Job Shop Scheduling Problem (JSSP). Basic method of HKA is implemented on 
searching near optimal solution for JSSP. First, a mathematical model of the HKA was developed and 
tested with test data on 4-bencharks to test minimum makespan. A mathematical model of HKA is written 
in MATLAB software environment, which is responsible for prediction calculation of near optimum 
solution for JSSP. Secondly, results compressing and evaluation between our HKA and particle swarm 
optimization (PSO), the multi-phase particle swarm optimization (MPPSO) and the bare-bones particle 
swarm optimization (BBPSO) was made. Promising results shows that HKA can be used for solving 
different scheduling problems, like minimum needed number of workers (MNW), open vehicle routing 
problem and automated guided vehicle scheduling problems. Results show that the new method of 
implementing HKA for JSSP can predict near optimal solutions especially for low-dimensional cases in 
which our algorithm gives us the best results.  

Key words: Heuristic Kalman Algorithm, Job Shop Scheduling Problem, Optimization 

1. INTRODUCTION 

The Kalman Algorithm (KA), as a well-known method, is 
usually implemented for problems related to prediction, 
like route planning, guidance, control of trajectory 
optimization and navigation. KA is also known as linear 
quadratic estimation algorithm, which makes 
measurements observed over time. The algorithm can 
predict unknown variables on premeasured simple’s 
data. The basic method of KA works in two steps; in the 
first step of prediction, the algorithm estimates current 
state variables and update variables data using the 
weighted average. In the second step, algorithm present 
input variables and previously calculated weighted 
average state. Newly calculated variables represent the 
next step of using predicted results for execution. 
Execution gives more weight to higher certainty results, 
which run in real time, using only present input 
measurements, calculated average state and uncertainty 
matrix. Algorithm results are always corrupted with some 
random noise and numerical data error, especially when 
we use basic method of KA. That’s why in current days, 
we can find some extensions and generalizations of KA 
method, such as the unscented KA (uses unscented 

transform of matrix function), extended KA (nonlinear 
version of KA) and HKA (used for differentiable systems). 
In this paper HKA is presented, this method shows the 
most positive results, which in our case is used and 
implemented for solving JSSP.  

In this research work, we present the basic 
implementation of HKA for solving JSSP. In our 
research, the main objectives are: 

- Modeling and programing the HKA suitable for solving 
JSSP using MATLAB software, 

- Testing newly made HKA on 4-benchmarks, 

- Comparing results with four existing population-based 
stochastic methods. 

Results will represent by numerical experiments of our 
algorithm on four test benchmarks. Results compressing 
will show advantages and disadvantages according to 
the existing population-based stochastic methods, 
particle swarm optimization (PSO), the multi-phase 
particle swarm optimization (MPPSO) and the bare-
bones particle swarm optimization (BBPSO). The 
contribution consists a newly created HKA for solving 
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JSSP. Experimental results are compared to the already 
existing methods for getting better knowledge about 
HKA, needed for further research of solving scheduling 
problems, such as the traveling salesman problem (TSP) 
and the vehicle routing problem (VRP). 

2. LITERATURE REVIEW 

Toscano et al. [1] present a new optimization method of 
HKM, as an alternative approach for solving continuous, 
non-convex optimization problems. The algorithm has 
measurement process designed to give an estimated 
optimum. Measurements and data collection of an 
existing already done experiment and data of an 
experiment in real time is a basic principle of KA used for 
prediction. Application example was introduced by 
Toscano et al. [2] implement HKA for the design of a 
robust flux estimator and the optimal design of no-chip 
spiral inductors. Pakrashi et al. [3] use HKA for partition 
data clustering. They present new improved approach of 
HKM-K, which has benefits of fast convergence to the 
global optimum. Maranakis et al. [4] proposed the new 
hybrid method of Particle Swarm Optimization (PSO) for 
solving Open Vehicle Routing Problem which is suitable 
for solving the large-scale problem within short 
computational time. All basic methods for solving JSSP 
are represented in a book written by Pinedo [5], which in 
all cases represents the foundation for further research 
work to implementing HKA for JSSP. Newly created 
algorithms are tested on benchmarks examples Perez 
[6], on which the results of new algorithm can be tested 
and compared to the existing one. Our HKA for solving 
JSSP is tested on 4 benchmarks, J3M4 [5], J6M6 [6], 
J10M10 [6] and J20M5 [6]. Eberhart et al. [7] presented 
the use of benchmarks testing between PSO and both 
artificial life and evolutionary computation. Shi et al. [8] 
present how the implementation of the new parameter 
(inertia weight) influences on PSO algorithm. Zhang et 
al. [9] in paper proposes a new bare-bones multi-
objective PSO algorithm to solve the dispatch problems, 
the algorithm is capable of generating an approximation 
of the Pareto frontier. PSO algorithms are also used for 
geophysical inverse problems, where Poormirzaee et al. 
[10] shows that PSO is a suitable method for investing 
microtremor waves. Hybrid Genetic Algorithm (GA) and 
PSO algorithm for multi-objective Automated Guided 
Vehicle (AGV) scheduling is presented by Mousavi [11], 
the algorithm is capable of scheduling AGV for 
transporting materials within a manufacturing facility or a 
warehouse. Proposed method obtain less mean 
computational time as benchmark method. The 
multiphase PSO algorithm, which is a basic method in 
mentioned hybrid algorithms, is presented in the Ph.D. 
thesis of Al-Kazemi [12]. Zhang et al. [13] also presented 
multi-phase PSO algorithm in case for solving break-
even distance of railway transportation. In another case, 
Tang et al. [14] use the same method for solving the bulk 
cargo port scheduling problem. As mentioned before [9], 
also Kennedy [15] present bare-bones PSO basic 
method and compared to the other stochastic 
population-based methods. In a lot of papers rescuers 
test their proposed algorithm on mathematical models 
and simulation real world applications, as Zapciu et al. 

[16] proposed algorithm for production systems flow 
modeling using decomposition method and required 
buffers size, they test the mathematical model of Markov 
chains with the discrete system simulation model. 

3. HEURISTIC KALMAN ALGORITHM 

The Heuristic Kalman Algorithm (HKA), as a Kalman 
Filtering based heuristic approach, has been proposed 
for solving continuous and non-convex optimization 
problems, which is only needed to set a small number of 
parameters by the user (only three) [1,2]. Although it 
belongs to the so-called “population based stochastic 
optimization techniques”, the HKA search heuristic is 
entirely different from others, which explicitly considers 
the optimization problem as a measurement process 
designed to give an estimate of the optimum [1,2]. 
Through the measurement process, a specific procedure 
based on the Kalman estimator was developed to 
improve the quality of the estimate obtained [1,2]. The 
HKA is first tested by several unconstrained and 
constrained non-convex test problems and has a 
comparative advantage in terms of computational time 
and success rate [1]. Then the HKA has been applied in 
the design of a robust flux estimator of an induction 
machine and the optimal design of on-chip spiral 
inductors [2]. Pakrashi and Chaudhuri first employ the 
HKA into partitional data clustering and combines the 
benefits of global exploration of HKA and the fast 
convergence of K-Means method to obtain good 
clustering in a reasonable amount of time [3]. The 
practical implementation of the HKA requires properly 
initializing the Gaussian distribution, selecting the user-
defined parameters and introducing a stopping rule [1]. 
During the optimization process of the HKA, the solution 
is first generated according to the Gaussian distribution 
parametrized by a given mean vector with a given 
variance–covariance matrix, then a measurement 
procedure is followed, and finally, an optimal estimator of 
the parameters of the random generator is introduced. 
The general procedure of HKA shown in Algorithm 1 
[1,2]. 

Algorithm 1 Pseudo-code of HKA 

Step 0 Initialization. Set the number of population size N, the 
number of top individuals under consideration Nξ the 
slowdown coefficient 𝛼  and the maximum number of 

iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. Initialize the current iteration 𝑖𝑡𝑒 = 0, the 

mean 𝑚 and the variance–covariance vector 𝑆: 

𝑚 = [
𝑥1+𝑥1

2
, ⋯ ,

𝑥𝑑+𝑥𝑑

2
]

𝑇

,𝑆 = [(
𝑥1−𝑥1

6
)

2

, ⋯ , (
𝑥𝑑−𝑥𝑑

6
)

2

]
𝑇

 

where 𝑥𝑖  (respectively, 𝑥𝑖 ) is the ith upper bound 

(respectively, lower bound) of the problem and 𝑑  is the 

dimension of the problem. 
Step 1 iteration. 
for 𝑖𝑡𝑒 = 1: 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

Step 2.1 Random generator. Generate a population 𝑥 with 

𝑁 individuals by Gaussian distribution: 

𝑥 = 𝑚𝑣𝑛𝑟𝑛𝑑(𝑚, 𝑑𝑖𝑎𝑔(𝑆), 𝑁)  

where 𝑚𝑣𝑛𝑟𝑛𝑑(. )  is a function that generates random 

vectors from the multivariate normal distribution and 𝑑𝑖𝑎𝑔(. ) 
is a function that generates diagonal matrices or diagonals 
of a matrix. 
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Step 2.2 Measurement process. Calculate the individual 
fitness 𝑓 in 𝑥, choose the top 𝑁𝜉 individuals according to 𝑓, 

compute the measurement 𝜉 and the variance vector 𝑉: 

𝜉 =
1

𝑁𝜉

∑ 𝑥𝑗
𝑁𝜉

𝑗=1 , 𝑉 =
1

𝑁𝜉
[∑ (𝑥𝑗,1 − 𝜉1)

2
, ⋯ ∑ (𝑥𝑗,𝑑 − 𝜉𝑑)

2𝑁𝜉

𝑗=1

𝑁𝜉

𝑗=1 ]
𝑇
  

Step 2.3 Optimal estimation. Compute the posterior 
estimation the mean 𝑚_𝑝𝑒  and the variance–covariance 

matrix 𝑆_𝑝𝑒: 

𝐿 = 𝑆./(𝑆 + 𝑉) ,  𝑊 = (𝑆 − 𝐿.∗ 𝑆)0.5 ,  𝑚_𝑝𝑒 = 𝑚 + 𝐿.∗ (𝜉 −

𝑚) , 𝜏 = 𝑚𝑖𝑛 (1, 𝑚𝑒𝑎𝑛(√𝑉)
2

) , 𝑎 = 𝛼𝜏 (𝜏 + 𝑚𝑎𝑥(𝑊))⁄ , 

𝑆_𝑝𝑒 = (𝑆0.5 + 𝑎(𝑊 − 𝑆0.5))
2
  

where 𝑎 is the slowdown factor, 𝑚𝑒𝑎𝑛(. ) is a function that 

calculates the average or mean value and the symbol ./ 

(respectively, .∗ ) stands for a componentwise divide 

(respectively, product). 
Step 2.4 Initialization of the next step: 

𝑚 = 𝑚_𝑝𝑒, 𝑆 = 𝑆_𝑝𝑒 

end 

4. NUMERICAL EXPERIMENTS 

4.1 Encoding 

The HKA was originally proposed for continuous 
optimization problems, but the JSSP is a well-known 
combinatorial optimization problem, so this paper 
employs the relative position indexing[4]. In order to use 
a population-based continuous optimization algorithm, 
each element of the solution is converted to a floating 
point that  randomly initializes in the open interval (0,1) 
(see Fig 1 S0.). The optimized solution is transformed 
into the discrete domain by using the relevant position 
index (see Fig 1 S1.). Then the processing order 
sequence of the job can be got by the processing time 
table (see Fig 1 S2.). In Fig 1 S2, the operation 
processing order is as follows: (2, 2), (1, 1), (2, 1), (1, 2), 
(1, 3), (2, 3), which (., .) means job number and machine 
number. 

 

no jobs
machine

sequence

processing

time

1 1 1 10

2 1 2 8

3 1 3 4

4 2 2 8

5 2 1 3

6 2 3 6

{0.8147, 0.9058, 0.1270, 

0.9134, 0.6324, 0.0975}
S0

S1 6 3 5 1 2 4

S2 2 1 2 1 1 2  

Figure 1. Example of the solution encoding. 

4.2 Experiment 

This paper chooses J3M4 [5], J6M6 [6], J10M10 [6] and 
J20M5[6] as the benchmark instances of the JSSP. Their 
optimal solutions of the benchmark instances have 
makespan of 28, 55, 930 and 1165 respectively. 

For comparison, the 4-benchmark instances were also 
solved by PSO, the MPPSO and BBPSO. The PSO is 
proposed by Eberhart and Kennedy [7], and improved by 
Shi and Eberhart (the PSO of this paper represents the 
improved version) [8]. The PSO is successfully used to 
solve many practical problems such as the open vehicle 
routing problem, the geophysical inverse problems and 
the automated guided vehicle scheduling problems [9–
11]. The MPPSO is proposed by Al-Kazemi and applied 

to the problems such as the break-even distance of 
railway freight transportation and the bulk cargo port 
scheduling problem [12–14]. The BBPSO is proposed by 
Kennedy and applied to solve the 
environmental/economic dispatch problems [9,15]. 

Algorithms were implemented in MATLAB language. All 
experiments are simulated in MATLAB version R2016b. 
The algorithms are independently run 30 times for each 
instance. 

4.3 Result 

According to [1,3] and experiment, the parameter for the 
HKA is set as 𝑁 = 100, 𝑁𝜉 = 10, 𝛼 = 0.3 and 𝑀𝑎𝑥𝑙𝑡𝑒𝑟 =

500. The parameter for the PSO is set as 𝑁 = 50, 𝑐1 =
2.8 , 𝑐2 = 1.3 , 𝑤 = 0.729  and 𝑀𝑎𝑥𝑙𝑡𝑒𝑟 = 1000  [10]. The 

parameter for the MPPSO is set as 𝑁 = 50 , 𝑝ℎ = 2 , 

𝑝𝑐𝑓 = 5 , 𝑔 = 2 , 𝑠𝑙𝑙𝑢 = [1, 𝑚𝑖𝑛(10, 𝑑)] , 𝑉𝐶 = 10  and 
𝑀𝑎𝑥𝑙𝑡𝑒𝑟 = 500 [12]. The parameter for the BBPSO is set 

as 𝑁 = 50 and 𝑀𝑎𝑥𝑙𝑡𝑒𝑟 = 1000. 

Fig 2 shows the four algorithms solution convergence for 
the benchmark instances. For the J3M4 (see Fig 2 a-d.), 
all four algorithms can get the optimal solution at the time 
of initialization. For the J6M6 (see Fig 2 e-h.), all four 
algorithms tend to be optimal solutions. In addition, the 
MPPSO and the BBPSO can converge to the optimal 
fitness. For both the J10M10 (see Fig 2 i-l.) and the 
J20M5 (see Fig 2 m-p.), all 4 algorithms can tend to be 
optimal solutions but none of them can converge to 
optimal fitness. 

The statistical analysis of the four algorithms for the 4-
benchmark instances is shown in Fig 3. As shown in Fig 
3 a, all four algorithms can always obtain the optimal 
value of the J3M4. The performance of the MPPSO and 
the BBPSO is more stable than others for the J6M6 (see 
Fig 3 b.). For both the J10M10 (see Fig 3 c.) and the 
J20M5 (see Fig 3 d.), the MPPSO performs best, 
followed by the HKA, then the BBPSO, and the last one 
is the PSO. 

The computational statistics of the fitness of the four 
algorithms for the 4-benchmark instances shown in 
Table 1 and 2. The success rate of all algorithms for the 
J3M4 is 100 %. For the J6M6, the success rate of the 
MPPSO and the BBPSO is still 100 %, but the HKA and 
the PSO are only 43 % and 17 %, respectively. Not all 
algorithms can find the optimal makespan, for both the 
J10M10 and the J20M5. 

All 4 algorithms perform well in low-dimensional of the 4 
benchmark instances. However, with the dimension 
increases, the performance of all algorithms decreases. 
The robustness of the MPPSO is the best, which can 
perform better in all 4-benchmark instances than others. 
The BBPSO has a good performance on low-
dimensional benchmark instances, but its performance 
has decreased significantly with the dimension of the 
benchmark instances increases. The HKA has a 
relatively slow descent performance with the dimension 
of the benchmark instances increases. The PSO shows 
the worst performance, its performance significantly 
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decreased with the dimension of the benchmark 
instances increased. 
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Figure 2. The four algorithms convergences of the best solutions for the 4-benchmark instances. 

Figure 3. Statistical analysis of the four algorithms for the 4-benchmark instances. 

Table 1. Computational statistics of the four algorithms on the fitness for the J3M4 and J6M6. 

name 
J3M4 J6M6 

Min Max Mean 
Standard 
deviation 

Success 
rate (%) 

Min Max Mean 
Standard 
deviation 

Success 
rate (%) 

HKA 28 28 28 0 100 55 58 56 1 43 

PSO 28 28 28 0 100 55 60 58 2 17 

MPPSO 28 28 28 0 100 55 55 55 0 100 

BBPSO 28 28 28 0 100 55 55 55 0 100 

Table 2. Computational statistics of the 4 algorithms on the fitness for the J10M10 and J20M5. 

name 
J10M10 J20M5 

Min Max Mean 
Standard 
deviation 

Success 
rate (%) 

Min Max Mean 
Standard 
deviation 

Success 
rate (%) 

HKA 960 1044 995 25 0 1180 1307 1224 31 0 

PSO 1064 1242 1155 38 0 1411 1589 1505 42 0 

MPPSO 964 1003 986 11 0 1181 1236 1206 15 0 

BBPSO 1043 1153 1095 28 0 1269 1405 1344 35 0 

5. CONCLUSION

In this paper, the HKA is used to solve the JSSP. Four 
benchmark instances of the JSSP are selected to test 
the algorithm. And 3 population-based continuous 
optimization algorithms were selected as a comparison. 
the HKA performs well in low-dimensional problems but 
decreases with the problem dimension increases. And its 
performance is always no better than the MPPSO in all 
4 benchmark instances. However, in the high-

dimensional problem, the performance of the HKA is 
better than both the PSO and the BBPSO. 
Computational results and comparisons showed that the 
HKA can be used to solve the JSSP, especially in low-
dimensional. 

The future research is how to enhance the optimization 
ability of the HKA, especially in high dimensional. In 
addition, we can try to apply the HKA to other 
combinatorial optimization problems such as the 
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traveling salesman problem (TSP) and the vehicle 
routing problem (VRP). 
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